CHOOSE YOUR CURRENCY


SIMPLE SEQUENCE REPEAT (SSR) GENETIC ANALYSIS OF CASSAVA MOSAIC DISEASE RESISTANCE IN SELECTED F1 POPULATIONS OF CASSAVA

Amount: ₦5,000.00 |

Format: Ms Word |

1-5 chapters |



ABSTRACT

Cassava mosaic disease caused by begomoviruses is the most widespread disease of cassava in Africa.  Simple sequence repeat (SSR) genetic analysis of an F1 population of cassava was carried out to identify new sources of CMD resistance. Genomic DNA extracted from parents and progeny was amplified using polymerase chain reaction (PCR). PCR amplifications were run on polyacrylamide and agarose gels. SSR marker technology was used to identify markers linked  to  CMD  resistance  via  bulk  segregant  analysis  (BSA).  One  hundred  and  forty molecular markers from the International Center for Tropical Agriculture (CIAT) were used to screen the parents, contrasting bulks and the individuals that make up the contrasting bulks.

The  bulk  segregant   analysis   produced   forty  polymorphic   markers.   Screening   of   the contrasting individuals with the polymorphic markers revealed four candidate markers (SSRY 238, SSRY 51, SSRY 76 and SSRY 20) linked to CMD resistance. The correlation coefficient values between genotypic and phenotypic data classes for candidate markers were generally low.   The t-test value between both genotypic classes (absence of band versus presence of band) were not significant (P>0.05) in each of the four markers. The results from this study suggest that there are at least two new CMD resistance genes in the mapping population.

INTRODUCTION

Cassava (Manihot esculenta Crantz) is an important starchy crop grown in the tropical and  sub-tropical  regions  of  the  world.  Cassava  originated  from  Latin  America  and  was introduced to Africa between the 15th  and 17th  century by the Portuguese traders. The crop ranks sixth among the important staple food crops (Mann, 1997), with more than 800 million people depending on it for their calorie needs (FAO, 2001).

Many diseases and pests like cassava  bacteria  blight,  cassava  anthracnose  disease, cassava mosaic disease (CMD), cassava mealy bugs, and green spider mites attack cassava. Among these, cassava mosaic disease (CMD) constitutes a major constraint and is the most important economically. It is also the most widespread disease of cassava in Africa. Cassava root yield losses arising from attack of CMD could be as  high as 95%, depending on the location and innoculum pressure conditions (Jenings, 1994; Thresh et. al., 1994b; Fauguet and Fargette, 1987). Legg and Thresh (2003) in a  country-level survey carried out in all major cassava producing countries estimated that continental losses in 2003 ranged from 19 to 27 million metric tonnes, amounting to about 1.9-2.7 billion US dollars.

Conventional breeding efforts have been made to combat the problem of CMD. This method is considerably slow and expensive. It may take up to 10-15 years to transfer a trait from a donor species into a receiving cultivar destined for improvement. The time needed to transfer  the desired gene into a crop cultivar  depends  on the  source  of the gene and the evolutionary distance of that source to the recipient crop. If the gene source is a landrace or a related species to the crop, breeding for disease  resistance may take up to 5-10years. Less related wild species may be rich reservoirs of resistance genes, but to transfer such genes into the crop cultivar may take longer years (Prem, 2006). Pre- and post-fertilization barriers may impede sexual hybridization between the donor and the recipient crops, thereby compounding the  problem  of  alien   gene  transfer  (Prem  2006).  Furthermore,   conventional   breeding efficiency is affected by genotype x environment interaction and resistance could break down due to sudden emergence of new biotypes of the virus. There is therefore the need for a more efficient breeding strategy that will enhance identification  of resistance  genes that will aid CMD resistance in cassava. But considering the time and resources required for developing resistant  cassava  varieties,  it is important  to develop  varieties  carrying  as many different genes for resistance as possible.  Identifying and concentrating different resistance genes will provide stable resistance against a broad spectrum of the virus.

Molecular markers are useful tools in gene tagging studies. Molecular markers  are segments  of an organism’s  DNA that show genetic variability between  individuals  in the same species or population.  They are not affected by the environment.  They  enhance the efficiency of conventional plant breeding by carrying out selection not directly on the trait of interest but on the molecular markers linked to the trait of interest. Simple sequence repeat (SSR) marker technology is one of the widely used molecular markers in genetic studies. SSR markers  are  small  tandem  repeats  of  DNA  (usually  2-5  base  pair  (bp)  in length).  Once molecular  markers  closely  linked  to  CMD  resistance  are  identified,  marker  –  assisted selection (MAS) can be done in segregating populations.  For MAS to be effective in a plant breeding programme, the  following conditions must be fulfilled: (a) marker (s) should co- segregate or be closely linked with the desired traits; (b) availability of an efficient means of screening  large  populations  (c)  the  screening  technique  should  have  high  reproducibility across laboratories, (d) and should be user-friendly (Mohan et al., 1997).

Cassava breeding scheme is typically a long process and very expensive. Considering the long time required to develop and release new varieties, there has been demand to seek effective strategies to make the breeding process much more efficient.  Molecular markers are currently  being  used  to  understand  the  genetics  of  several  traits  in  crop  improvement programmes and to rapidly increase efficiency of breeding activities.   Efficiency of cassava breeding  can  be  enhanced  through  the  use  of  molecular  markers.  Markers  enable  the efficiency  of  selection  by  enhancing  the  precise  identification  of  genotypes  without  the confounding  effect  of  the  environment,  thus  increasing  heritability.  Breeding  for  disease resistance using conventional methods is not only time-consuming, but less-effective. This is attributable  to  the  dynamic  nature  of  the  pathogens  that  have  the  potentials  of  altering virulence as new strains evolve. MAS has the advantage of precision in identifying, tagging and isolating DNA segments that have the capacity of precisely addressing many pathogenic problems.   These  considerations   have  prompted   the  present  study  with  the  following objectives:

(i)  to identify new sources of CMD resistance gene; and

(ii) to elucidate the genetic control of CMD using the SSR marker technology.



This material content is developed to serve as a GUIDE for students to conduct academic research


SIMPLE SEQUENCE REPEAT (SSR) GENETIC ANALYSIS OF CASSAVA MOSAIC DISEASE RESISTANCE IN SELECTED F1 POPULATIONS OF CASSAVA

NOT THE TOPIC YOU ARE LOOKING FOR?



Project 4Topics Support Team Are Always (24/7) Online To Help You With Your Project

Chat Us on WhatsApp »  09132600555

DO YOU NEED CLARIFICATION? CALL OUR HELP DESK:

   09132600555 (Country Code: +234)
 
YOU CAN REACH OUR SUPPORT TEAM VIA MAIL: [email protected]


Related Project Topics :

Choose Project Department