CHOOSE YOUR CURRENCY


DEVELOPMENT OF LAYERED ELASTIC ANALYSIS PROCEDURE FOR PREDICTION OF FATIGUE AND RUTTING STRAINS IN CEMENT STABILIZED LATERITIC BASE OF LOW VOLUME ROADS

Amount: ₦5,000.00 |

Format: Ms Word |

1-5 chapters |



ABSTRACT

It is generally known that  the  major  causes  of failure  in asphalt pavement is fatigue cracking  and  rutting deformation,  caused  by  excessive  horizontal tensile  strain  at the bottom of the asphalt layer and vertical  compressive strain  on top of the subgrade due to repeated traffic loading.  In the design  of asphalt pavement, it is necessary to investigate these  critical  strains  and  design  against  them.  This study  was  conducted to develop a simplified layered  elastic  analysis  and  design  procedure to predict fatigue  and  rutting strain  in cement-stabilized base,  low-volume asphalt pavement.  The major  focus  of the study  was to develop  a design  procedure which  involves  selection  of pavement material properties and thickness  such that strains  developed due to traffic loading are within the allowable   limit  to  prevent fatigue   cracking  and  rutting deformation.  Analysis   were performed for hypothetical asphalt pavement using  the layered  elastic analysis  program EVERSTRESS  for   four   hundred  and   eighty   pavement  sections   and  three   traffic categories. A total of Ninety  predictive regression equations were  developed with thirty equations for  each  traffic  category   for  the  prediction of  pavement  thickness, tensile

(fatigue) strain below asphalt layer and compressive (rutting) strain  on top the subgrade. The  regression equations were  used  to  develop   a layered  elastic  analysis  and  design program, “LEADFlex”. LEADFlex procedure was  validated by comparing its result  with that  of EVERSTRESS and  measured field data. The LEADFlex-calculated and  measured horizontal tensile  strains  at  the  bottom of the  asphalt layer  and  vertical  compressive strain  at the top  of the subgrade were  calibrated and  compared using  linear  regression analysis.   The  coefficients   of  determination R  were   found  to  be  very   good.   The calibration  of  LEADFlex-calculated  and   measured  tensile   and  compressive  strains resulted in minimum R? of 0.992 and 0.994 for tensile  (fatigue) and compressive (rutting) strain  respectively indicating that  LEADFlex is a good  predictor of fatigue  and  rutting strains  in cement-stabilized lateritic base for low-volume asphalt pavement. The result  of this  research will  enable   pavement  engineers to  predict critical  fatigue  and  rutting strains  in low-volume roads  in order to prevent pavement failures.

CHAPTER

INTRODUCTION

1.1     Background  of Study

Since the early  1800′ s when  the first paved highways were  built,  construction of roads has  been  on  the  increase  as  well  as  improved  method of construction.  The  need  for stronger, long-lasting and all-weather pavements has become a priority as result  of rapid growth in the automobile traffic and  the development of modern civilization. Since the beginning of road  building,  modeling of highway and  airport pavements has  been  a difficult  task.   These  difficulties  are due  to the complexity of the pavement system  with many  variables such  as thickness, material technology, environment and  traffic. Most attention has  been  given  to material technology and  construction techniques and  less was  given to material properties and their behaviour. Terzaghi was the first to introduce the  concept  of subgrade modulus and  plate  load  test  to pavement studies.  Given  the load  (traffic) and the measurement of deflection  under this load, the carrying capacity  of a pavement could  be determined. Several  other  soil tests  were  developed, such  as the California  Bearing Ratio (CBR), the triaxial test and the unconfined compression test.

Several theoretical developments followed  in the different parts  of the world, In Europe, for flexible pavements, Shell adopted Burmister’s theoretical work  to model  and analyze the  pavement as an  elastic  layered  system  involving stress  and  strain  (Claussen  et al,

1977).   In  North   America   (USA),  a  comprehensive  set  of  full-scale   road   tests  were launched.   The   American  Association  of  State   Highway  Official   [AASHTO,   1993) introduced  its first  guide  in 1972 which  was  revised  in 1986 and  1993.  From  these  two agencies,  a conclusion can be drawn that  the trend  in pavement engineering was  either empirical or a mechanistic method. An empirical approach is one which  is based  on the results  of experiments or experience.  This means  that  the relationship between design inputs  (loads,  material,  layer  configuration and   environment)  and  pavement failure were  arrived at  through  experience, experimentation  or  a  combination of  both.  The mechanistic  approach involves   selection  of  proper  materials and  layer  thickness   for specific  traffic  and   environmental  conditions  such   that  certain   identified  pavement failure  modes  are minimized. In mechanistic design, material parameters for the analysis are determined at conditions as close as possible  to what  they  are in the road  structure. The mechanistic  approach is based  on  the elastic  or visco-elastic  representation of the pavement  structure.   In   mechanistic   design,   adequate  control    of  pavement  layer thickness as well  as material quality  are  ensured based  on  theoretical stress,  strain  or deflection   analysis.  The  analysis   also  enables   the  pavement  designer to  predict with some amount of certainty the life of the pavement.

It is generally accepted that  highway pavements are best modeled as a layered  system, consisting of layers  of various  materials (concrete, asphalt, granular base, subbase  etc.) resting  on the natural subgrade.  The behaviour of such a system  can be analyzed using the  classical   theory   of  elasticity   (Burmister,  1945).  This  theory   was   developed  for continuous media,  but  pavement  engineers recognized very  clearly  that  the  material used  in the construction of pavements do not form  a continuum, but  rather a series  of particular layered  materials.

Modeling the uncracked pavement as a layered  system, the following assumptions are usually made:

1.        Each  layer  is  linearly   elastic,  isotropic   and  homogenous,  hence  are  not stressed  beyond their elastic ranges.

2.        Each  layer  (except  the  subgrade)  is finite  in  thickness and  infinite  in the horizontal direction.

3.         The subgrade extends  infinitely  downwards

4.        The loads are applied on top of the upper layer

5.         There are no shear forces acting directly  on the loaded surface

6.         There is perfect  contact between the layers at their interfaces.

Because  of  assumption  (1),  the  constitutive  relationship  for  such  material  involves variables  such  as  the  modulus  of  elasticity   (E)  and   the  Poisson’s  ratio  (v),  Elastic constants   or   bulk   modulus   (K)    and   shear    modulus   (G).   While   some   authors; (Domaschuck and  Wade,  1969); (Naylor,1978); (Pappin and  Brown,1980); (Bowles,1988) feel  that  K  and  G  are  preferable  to  E and  v    to  characterize  earth  materials,  it  is customary to use  E and  v in all geotechnical and  pavement engineering computations. Because  of the  transient or repetitive nature of loading  in pavement engineering, the elastic  modulus can be replaced by the resilient  modulus (M,). The resilient  modulus is defined  as the recoverable strain  divided by stress.

1.2     Definition of Problem

Road failures  in most  developing tropical  countries have  been traced  to common causes which   can  broadly be  attributed  to  any  or  combination  of  geological,  geotechnical, design, construction, and  maintenance problems (Ajayi, 1987). Several studies  have been carried   out  to  trace   the  cause   of  early  road   failures,  studies   were   carried   out  by researchers on the geological  (Ajayi,  1987), geotechnical,  (Oyediran, 2001), Construction (Eze-Uzomaka, 1981) and maintenance (Busari, 1990) factors. However, the design  factor has  not been  given  adequate attention.   In Nigeria,  the only  design  method for asphalt pavement is the California  Bearing Ratio (CBR) method. This method uses the California Bearing  Ratio and  traffic volume as the sole design  inputs.  The method was  originally developed by  the  California  Highway Department and  modified by the  U.S Corps  of Engineers (Corps  of Engineers,  1958).  It  was  adopted by  Nigeria   as contained in the Federal  Highway Manual  (Highway  Manual-Part 1, 1973).  Most  of the roads  designed using  the CBR method failed soon after construction by either fatigue  cracking  or rutting deformation  or  both.  In  their   researches  (Emesiobi,  2004,  Ekwulo     et  al  ,   2009),  a comparative  analysis    of  flexible   pavements   designed  using    three   different  CBR procedures were  carried  out, result  indicated  that  the pavements designed by the CBR• based  methods are  prone  to both  fatigue  cracking  and  rutting deformation.  The  CBR method was  abandoned in California  50 years  ago  (Brown,  1997)  for the more  reliable mechanistic-empirical methods (Layered Elastic Analysis  or Finite Element  Methods).  It is regrettable that  this  old method is still being  used  by most  designers in Nigeria  and has  resulted in unsatisfactory designs,  leading  to frequent early  pavement failures.  In Pavement Engineering, it is generally known that  the major causes  of failure  of asphalt pavement is fatigue  cracking  and  rutting deformation, caused  by excessive  horizontal tensile  strain  at the bottom  of the asphalt layer and vertical  compressive strain  on top of the  subgrade  due  to repeated traffic loading  (Yang,  1973;   Saal and  Pell,  1960; Dormon and  Metcaff, 1965; NCHRP, 2007)). In the design  of asphalt pavement, it is necessary to investigate these critical strains  and  design  against them. There is currently no pavement design  method in Nigeria  that  is based  on analytical approach in which  properties and thickness of the pavement layers are selected  such  that  strains  developed due  to traffic loading do  not  exceed  the  capability  of  any  of  the  materials  in  the  pavement.  The purpose of  this  study  therefore is  to  develop   a  layered   elastic  design  procedure to predict critical  horizontal tensile  strain  at the  bottom of the  asphalt bound layer  and vertical  compressive strain  on  top  of  the  subgrade in  cement-stabilized low  volume asphalt pavement in  order  to  predict failure  modes   such  as  fatigue  and  rutting and design  against  them.

1.3     Research Justification

A long lasting  pavement can be designed using  the developments in mechanistic-based method  (Monismith,   2004),  hence,   the   transition  of  structural  design   of  asphalt pavements  from   the   pure   empirical  methods  towards  a  more   mechanistic-based approach is  a  positive   development in  pavement engineering (Brown,  1997;  Ullidtz,

2002).  The  mechanistic-based  design   approach  (Layered  Elastic  Analysis   and  Finite Element)   is  based   on  the   theories   of  mechanics  and   relates   pavement  structural behaviour and  performance to traffic  loading  and  environmental influences.  The CBR design   method  developed  by  the   California   Highway  Department  has   since  been abandoned for a more  reliable  mechanistic  approach.  Therefore  the  need  to develop a layered   elastic  analysis   has  become   necessary  in  order  to  evaluate  the  response  of asphalt  pavement  due   to  traffic  loading.   Since  the  failure   of  asphalt  pavement  is attributable to fatigue  cracking  and rutting deformation, caused  by excessive  horizontal tensile  strain  at the bottom  of the asphalt layer and vertical  compressive strain  on top of the  subgrade, in  the  design  of asphalt pavement,  it is necessary to  investigate these critical  strains  and  design  against  them. The layered  elastic analysis  approach involves selection  of proper materials and  layer  thickness for specific  traffic and  environmental conditions such  that  certain  identified pavement failure  modes  such  as fatigue  cracking and  rutting deformations are minimized. The use of the layered  elastic analysis  concept is necessary in that it is based  on elastic theory(Yang, 1973), and can be used  to evaluate excessive  horizontal tensile  strain  at  the  bottom of the  asphalt layer(fatigue  cracking) and vertical  compressive strain  on top of the subgrade (Rutting deformation) in asphalt pavements. The  major  disadvantage of the  CBR procedure is its  inability  to evaluate fatigue   and   rutting  strains   in  asphalt  pavement  and   its  use  in  Nigeria   should  be discontinued. In the final analysis,  the research will go along  way in proffering solution to one of the factors responsible for frequent early  pavement failures  which  have  been attributed to unsatisfactory designs. The research will also be a noble contribution to the review   of  the   Nigerian  Highway  Manual  proposed  by   the   Nigeria   Road   Sector Development Team in 2005.

1.4     Objectives

The summary of the main  objectives of the research shall be as follows:

1.         Develop  a layered  elastic  analysis  procedure for design  of cement-stabilized low volume asphalt pavement in Nigeria.

2.        Develop   design  equations and  charts  for  the  prediction of pavement thickness, critical  tensile  and  compressive strains  in cement-stabilized low  volume asphalt pavements using  layered  elastic analysis  procedure.

3.        Collect pavement response standard data from Literature.

4.        Calibrate  and verify developed equations using the collected  data.

5.         Develop  a design  tool (program) LEAD Flex for design  of cement-stabilized lateritic base low-volume asphalt pavement.

1.5      Scope and Limitations

Scope:

The  study   is  to  address  one  of  the  factors  responsible for  frequent early  pavement failures  associated with  Nigerian roads; the design  factor, however, particular emphasis will be on the adoption of the layered  elastic analysis  procedure to predict critical fatigue and  rutting strains  in cement-stabilized low  volume  asphalt pavement. A design  tool (software)  shall  be  developed  for  the  procedure.  The  very  popular  layered  elastic analysis  software,  EVERSRESS (Sivaneswaran et al, 2001) developed by the Washington State Department of Transportation (WSDOT) will be employed for pavement analysis.

Limitations:

1.              Assumption of elasticity  of pavement materials

11.            Assumptions of Poisson’s ratio of pavement materials

1.6     Methodology of Study

The  method adopted in  this  study   is  to  use  the  layered   elastic  analysis   and  design approach to develop  a procedure that will predict fatigue  and rutting strains  in cement• stabilized low volume asphalt pavement. To achieve  this, the study  will be carried out in the following order:

1.  Characterize pavement  materials  in   terms   of  elastic   modulus,   CBR/resilient modulus and poison’s ratio.

2.   Obtain  traffic data needed for the entire design period.

3.   Compute  fatigue   and   rutting  strains   usmg   layered  elastic  analysis   procedure based  the Asphalt Institute response models.

4.   Evaluate  and  predict pavement responses (tensile  strain,  compressive strain  and allowable  repetitions to failure).

5.   If the trial  design  does not  meet  the performance criteria,  modify  the design  and repeat the steps 3 through 5 above until the design  meet the criteria.

The procedure shall be implemented in software (LEADFlex) in which all the above  steps are  performed automatically, except  the  material selection. Traffic  estimation is in  the form  of Equivalent Single Axle Load  (ESAL). The elastic  properties (elastic modulus of surface  and  base,  resilient  modulus of subgrade and  Poisson’s ratio)  of the  pavement material are used  as inputs  for  design  and  analysis. The resilient  modulus is obtained through correlation with  CBR. The layered  elastic  analysis  software EVERSRESS (Sivaneswaran et al, 2001) was employed in the analysis.

1.7     Purpose and Organization of Thesis

The  purpose of the  study  is to  use  the  layered   elastic  analysis  approach to  develop procedure that  will predict fatigue  and  rutting strains  in cement-stabilized low volume asphalt pavement. The study  is presented in six chapters.  Chapter One  introduces  the research topic  on the application of analytical  approach in design  in flexible  pavement and  the  need  to  develop   an  analytical approach  for  the  Nigerian (CBR)  method for flexible   pavement  design.   Chapter  Two   presents  Literature  Review   on   highway pavements  and  design   of flexible  pavements.  The  use  of  empirical and  mechanistic (analytical)   design   procedure  is  presented  in   detail.   Chapter  Three   outlines   and describes    in   details    the   procedure  adopted   in   the   research  including   material characterization,   design   inputs    and   summary  of  the   development  of  the   design procedure.  Chapter  Four  presents  details   of  the  development  of  the  layered  elastic

analysis  procedure for prediction of fatigue  and  rutting strains  in cement-stabilized low volume asphalt pavement. The  developed equations, program algorithm, visual  basic codes and program interface  and  design  are presented in details  in this chapter. Chapter Five  will  present  the  results   and   discussion  of  the  results   of  the  study.  Effect  of pavement parameters on pavement response shall be discussed in this section. Finally, Chapter Six will present the Conclusions and recommendations of the study.



This material content is developed to serve as a GUIDE for students to conduct academic research


DEVELOPMENT OF LAYERED ELASTIC ANALYSIS PROCEDURE FOR PREDICTION OF FATIGUE AND RUTTING STRAINS IN CEMENT STABILIZED LATERITIC BASE OF LOW VOLUME ROADS

NOT THE TOPIC YOU ARE LOOKING FOR?



Project 4Topics Support Team Are Always (24/7) Online To Help You With Your Project

Chat Us on WhatsApp »  09132600555

DO YOU NEED CLARIFICATION? CALL OUR HELP DESK:

   09132600555 (Country Code: +234)
 
YOU CAN REACH OUR SUPPORT TEAM VIA MAIL: [email protected]


Related Project Topics :

Choose Project Department